# Being optimistic about future prospects:

### 1: Falsifying classes of DE models

- Even rather general paradigms for cosmic acceleration (varying w, curved, early DE, ...) lead to rather tight predictions on observable quantities...
- ... and can therefore be ruled out with future distance + growth data

### Falsifying classes of DE models



### Being optimistic about future prospects:

### 2: Inner Space - Outer Space, circa 2020

Different observations on different scales with different systematics but measuring the same fundamental quantities

### Example: primordial non-Gaussianity





**CMB** 

LSS

# Example: using LSS to probe scale-dependent primordial non-Gaussianity

- ▶ Scale-dep NG models are motivated by particle theory (single-field inflation with self-interaction; mixed curvaton-inflaton models)
- ▶ Effects on LSS are significant, but theory predictions are uncertain
- ⇒ ongoing theoretical and simulation work
- ▶ Understanding of astrophysics (of DM halos, etc) required in order to probe fundamental physics



## I. Margins

- The easiest and cheapest way(s) to increase your forecast DE FoM within finite resources are to:
  - Switch from  $N \sigma \rightarrow (N-1) \sigma$  detections.
  - Ignore the greatest number of losses in your system.
  - Assume that a  $>>10\sigma$  systematic error will be estimated statistically and subtracted.
- This is not the way to construct a robust DE program!
  - But there is a real danger that this is what FoM-based "optimizations" will give us.
  - ... and then reality will come and we will lose some throughput, have to reject some data, ...

# II. Understanding & Controlling Systematic Errors

- This is critical. (I think we all at least nominally get this.)
- Understanding is key not just philosophizing.
  - Systematics not just a function of headline technique.
  - How do you know you didn't just get lucky last time/won't break something?
- We don't have enough people working on this and don't use the ones we have effectively. Why not?

[My possibly biased answers as a weak lensing person; I am guilty of all of these.]

- Perception that you will be invisible and won't get a job.
- Risk: what happens to me if I personally don't solve the problem in <3 years, or the future project using X method get axed?</p>
- Graduate/postdoc education rarely emphasizes the fundamental reasons why algorithms work or don't. WL is largely algorithm limited too much time is spent using/perturbing canned/hacked algorithms that need to be replaced with custom tools.

## III. The Space Mission

- Dark energy did very well in Astro2010. Both ground (LSST) and space (WFIRST) priorities highly relevant to DE.
- DE is one of several objectives it does not get all 5 years.
  - The demand by many users is a good thing!
  - No whining, please!
- Fitting all 3 techniques in the timeline:
  - Will be a challenge
  - Is recognized as needed to achieve full potential of SN + WL + BAO
  - Won't give us everything an optimized 1-technique mission could do
  - Will make major advances in volume/quality over what can be done from the ground <u>alone</u> (but synergy with LSST is essential)
- Uncertainties:
  - Would like to collaborate with Europe, but there have been challenges.

14 / 1. ~

### What limits the science?



Photometric Calibration – offsets introduce bias in redshift estimation



Error Estimation – color dependence in the estimation of photometric errors

## **SN Twins**



### Difficulties with standard RSD technique:

$$P_s = (b + f\mu^2)^2 P = f^2 P \left[ b/f + \mu^2 \right]^2$$

- f is degenerate with b. Can extract  $f^2P = f^2G^2P_0$ .
- Kaiser formula valid only on very large scales, k<0.1h Mpc<sup>-1</sup> at best?
- Sample Variance!

$$\sigma_{\ln fG} \ge \sqrt{11/N_m}$$



### WL data increases effective volume of RSD 10-fold



#### **Questions for discussion**

- What is the post-DES, post-BOSS goal? Seeking w!=-1? Or tests of GR? Falsifying specific other models? Do these need distinct experiments or have different prospects?
- Are we prepared to deal with reduction of LSST data? What techniques & strategies are essential to get what we can from ground-based visible imaging surveys?
- If LSST goes forth, what additional data are *necessary* to enable a great advance in DE constraints over DES/BOSS?
- What are the essential, most productive aspects of the future experimental program?